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The general expansion method is developed to calculate long-range interactions due to charged particles
outside the minimum images, for different periodic systems in molecular dynamics and Monte Carlo
simulations. The expansion coefficients are obtained by the least-squares method. The neighbor-box technique
is also developed to calculate long- and short-range interactions within the minimum images. The interactions
between neighbor particles are directly calculated, while the interactions between nonneighbor particles are
obtained by interpolation. The combination of the general expansion (GE) method and the neighbor-box
(NB) technique, named as the GENB method, renders the computation of long-range interactions proportional
toN3/2, whereN is the total number of particles in the central cell. Most importantly, the GENB method can
be easily used to study different periodic systems. As an example, water molecules in a cylindrical pore are
simulated to demonstrate the computational efficiency and accuracy of the neighbor-box technique under
different conditions.

1. Introduction

A major obstacle in molecular dynamics (MD) and Monte
Carlo (MC) simulations is the excessive amount of CPU time.
An important contributor to this is the calculation of the
electrostatic force between charged particles, which is a long-
range interaction. Since this interaction varies slowly with the
distance between particles, several hundred replicas of the
central cell in each periodic dimension are needed in order to
obtain convergent results.
A number of different methods have been used to take long-

range interactions into account. The Ewald summation method
is widely used for computing the electrostatic energy due to an
infinite array of point-charge images in periodic systems.1-7

Transformation algorithms8 have also been developed to speed
up the computations of the summations, and improved algo-
rithms of the ordern(log n) using fast Fourier transforms have
been reported.9,10 The reaction field method11-15 assumes that
the surrounding medium beyond a cutoff distance is a dielectric
continuum, and the field produced at the center of the truncation
sphere, by the polarization of the medium outside the sphere,
is the Onsager reaction field. In the expansion methods, the
lattice sums of the long-range interactions in periodic systems
may be expressed in terms of Bessel functions16 or by
multipoles.17,18 Recently, efficient algorithms based on multi-
pole expansion techniques have been developed.19

Despite the large amount of work in the past years, several
problems concerning the calculation of long-range interactions
for the above methods still remain unsolved. For example, the
Ewald summation method was originally developed for a cubic
central cell extended periodically in three dimensions. There-
fore, for periodic systems constrained by walls, the Ewald
summation method is not valid. The reaction field method is
not strictly consistent with the periodicity of the system, and
the existence of boundary walls also introduces difficulties in
calculating the reaction field. The expansion methods have been
used to study periodic systems between plates.16 However, it
is still necessary to develop more efficient algorithms for the
cells of complex shapes.

The aim of this paper is to present a new algorithm in order
to calculate the long-range interactions in different periodic
systems. We first develop a general expansion method to
calculate the electrostatic energy and the potentials in the central
cell, due to the contributions of particles outside the minimum
images. Then the neighbor-box technique is introduced and
used to calculate the short-range interactions and to interpolate
the long-range interactions to every particle in the central cell.
The combination of the general expansion (GE) method and
the neighbor-box (NB) technique renders the computational
complexity of long-range interactions proportional toN3/2, where
N is the total number of particles in the central cell. In the
final section we use the GENB method to simulate water
molecules in a cylindrical pore.

2. The General Expansion Method

2.1. Energy and Potentials in Periodic Systems.We
consider a central cell ofN particles with chargesqi (i ) 1,N)
under periodic conditions. The computer simulation is carried
out in a box of dimensionsDx, Dy, andDz in the x, y, andz
directions, respectively. The characteristic length of the central
cell, D, will be defined later for different systems. It is
convenient to introduce a dimensionless geometric parameter
λ as follows:

Three kinds of periodic systems are often used in simulations:
(a) One periodic dimension (1PD): The central cell is

replicated infinitely in thezdirection and the other dimensions
are constrained by walls. We define the characteristic length
D asD ≡ Dz. If Dz is larger thanDx andDy, then λ ) 1;
otherwise,λ > 1. In this study we will consider systems with
λ e 2.
(b) Two periodic dimensions (2PD): The central cell is

replicated infinitely in they andzdirections, while the sides in
thex direction are constrained by walls. We assumeDy ) Dz

) D. If D is larger thanDx, thenλ ) 1; otherwise,λ > 1. In
this study we will consider systems withλ e 2.
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(c) Three periodic dimensions (3PD): The central cell is
replicated infinitely in all the three dimensions. This is an
unconfined system. In this case the central cell is a cube, i.e.,
D ≡ Dx ) Dy ) Dz, andλ ) 1.
The dimensionless distances between two pointsr i ) (xi,yi,zi)

and r j ) (xj,yj,zj) in the central cell are defined as

We express the electrostatic energy of the central cell in a
general form for the three periodic systems as follows:

whereφ(r i,r j) is the electrostatic potential at pointr i due to a
unit charge atr j and all of its images. The prime symbol
indicates that the term for which|r i - r j + Dn|) 0 is neglected.
The sum overn is a sum over the lattice vectors. For 3PD,n
) lix + miy + niz, where (ix,iy,iz) are the unit vectors in the
three dimensions and (l,m,n) are integers; for 2PD,n ) miy +
niz; and for 1PD,n ) niz. The central cell corresponds ton )
0, and the minimum images consist of these replicas satisfying
|n| e 1. Hence, the minimum images of 1PD, 2PD, and 3PD
have 3, 9, and 27 replicas, respectively. The summations in
φ(r i,r j) may be separated into two parts: the first one is the
contributions of the particles in the minimum images, and the
second part includes the interactions of particles in other replicas:

whereΨ(r i,r j) is a dimensionless quantity due to the contribu-
tions of particles outside the minimum images. For 3PD, this
quantity is

with

The double primes indicate summations which exclude the
minimum images. We can expressφ(r i,r j) for 1PD and 2PD
in a similar way. If the summation forl is dropped out (i.e.,l
≡ 0) from eqs 5 and 6, we obtainφ(r i,r j) andâ for 2PD; and
if the summations forl andmare dropped out (i.e.,l ) m≡ 0)
from eqs 5 and 6, we obtainφ(r i,r j) andâ for 1PD. For the
three periodic systems considered here, we obtain the ranges
of â as follows: for 1PD andλ e 2, -0.75e â e 3.25; for
2PD andλ e 2, -0.75e â e 1.75; and for 3PD andλ ) 1,
-0.75e â e 1.25.
The total energy of the system may be expressed in the

following form:

Although eq 5 is divergent, we will show in section 2.2 that
the divergent term does not matter in the calculation of the

electrostatic force. Because the electrostatic potential varies
slowly with distance, the summations in eq 5 must be carried
out for at least several hundreds replicas in each periodic
dimension. Therefore, it is not realistic for any practical
computer simulations to directly use eq 5 to calculateΨ(r i,r j).
For this reason we use the expansion method in order to facilitate
the calculation. This method fields the summations indicated
in eq 5 independently of the particles’ relative positionsê, η,
andú.
2.2. Finite Expansion Method. The function (1+ â)-1/2

is expressed as a power series ofê, η, and ú, and then the
variables are taken out of the summation operations. The
function (1+ â)-1/2 may be expanded as a Taylor series or
Legendre polynomials. These methods have two major
limitations: First, the absolute value ofâ must be less than 1
for convergence. Second, many terms are needed in order to
keep the truncation errors small. The function (1+ â)-1/2 can
be replicated by a series of polynomials ofâ. For the three
periodic systems considered here,â varies in the range-0.75
e â e 3.25. Hence, we consider the following eighth-order
approximation:

where the constantsei (i ) 0, 8) are chosen in such a way that
(for the range of interest) the values of (1+ â)-1/2 can be best
fitted by the right-hand side of eq 8. Using the least-squares
method we obtain the following coefficients:

The relative error of this eq is less than 0.8% in the range-0.76
e â e 3.34.

From eq 6 the powers ofâ can be further expanded in terms
of ê, η, andú. After substituting eq 8 into eq 5, the summations
for l,m, andn can be accomplished independent of the variables
ê, η, andú. The odd powers ofl, m, andn cancel out, due to
symmetry. We must emphasize that, in this procedure the first
term e0 in eq 8 corresponds to a series, which is divergent as
the summations forl, m, andn are carried out to infinity. If
the central cell satisfies the charge neutrality condition, the
contributions of the positive and negative charges cancel each
other. Therefore, this term may be ignored. On the other hand,
if there is a net charge in the system, the potential due to this
term corresponds to a large constant, which tends to infinity as
the summations forl, m, andn are carried out to infinity. In
this case the terme0 introduces a large uniform background
potential. Again we may ignore this uniform potential without
affecting the dynamic properties of the system, because only
the differences of the potential affect the motion of particles. It
must be pointed out that, because the system considered is
periodic, and because the periodicity is intrinsic in the calcula-
tions, the removal of the background potential does not render
the system a nonconducting one. Therefore, after neglecting
the divergent terme0, the expansion formulas are still valid to
net-charge systems. In the latter case, the potential to be
considered is the relative potential, that is, the difference between
the real potential and the uniform background potential.

1

(1+ â)1/2
≈ e0 + e1â + e2â

2 + e3â
3 + e4â

4 + e5â
5 +

e6â
6 + e7â

7 + e8â
8 (8)

e0, 1.0023844;e1, -0.4728575;e2, 0.3087774;
e3, -0.3916828;e4, 0.5303276;e5, -0.4061865;

e6, 0.1637860;e7, -0.3299228× 10-1;

e8, 0.2623945× 10-2

ê )
xi - xj
D

, η )
yi - yj
D

, ú )
zi - zj
D

, d2 ) ê2 + η2 + ú2

(2)

E)
1

2
∑
i)1

N

∑
j)1

N

qiqj ∑
|′n|)0

∞ 1

|r i - r j + Dn|
)
1

2
∑
i)1

N

∑
j)1

N

qiqjφ(r i,r j) (3)

φ(r i,r j) )
1

D
Ψ(r i,r j) + ∑

|n|e1

1 1

|r i - r j + Dn|
(4)

Ψ(r i,r j) ) ∑
l)∞

∞

′′ ∑
m)∞

∞

′′∑
n)∞

∞

′′
1

(l2 + m2 + n2)1/2(1+ â)1/2
(5)

â ) 2êl + 2ηm+ 2ún+ d2

l2 + m2 + n2
(6)

E)
1

2
∑
i)1

N

∑
j)1

N

qiqj[1DΨ(r i,r j) + ∑
|n|e1

1

|r i - r j + Dn|] (7)
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For convenience we define the following summation conven-
tions:

These constants are directly obtained from numerical com-
putations and are given in Tables 1, 2, and 3. For the 3PD
case, ifK3 andL2K are transformed into integrations, they are
conditionally convergent, but not absolutely convergent.3 In
the present work, although the numerical summations for these
two constants converge very slowly, it seems that they approach
the steady values as the lattice numbers used in the summations
increase. In Table 3 the values ofK3 andL2K are obtained by
using 8000 replicas in each dimension.

The final result is to express the functionΨ(r i,r j) in the
following polynomial forms:

(a) for 1PD:

Ψ(r i,r j) ) (e1d
2+ 4e2 ú2)K3 + (e2d

4+ 12e3d
2 ú2 +

16e4 ú4)K5 + (e3d
6+ 24e4d

4 ú2+ 80e5d
2 ú4 + 64e6 ú6)K7 +

(e4d
8 + 40e5d

6 ú2+ 240e6d
4 ú4 + 448e7d

2 ú6 +

256e8 ú8)K9 + (e5d
10 + 60e6d

8 ú2 + 560e7d
6 ú4 +

1792e8d
4 ú6)K11 + (e6d

12 + 84e7d
10 ú2 +

1120e8d
8 ú4)K13 + (e7d

14 + 112e8d
12 ú2)K15 + e8d

16K17

(12)

(b) for 2PD:

Ψ(r i,r j) ) e1K
3d2 + 4e2M

2K(η2 + ú2) + e2K
5d4 +

12e3M
2K3(η2 + ú2)d2 + 16e4M

4K(η4 + ú4) +

96e4M
2N2K η2 ú2 + e3K

7d6 + 24e4M
2K5(η2 + ú2)d4 +

80e5M
4K3(η4 + ú4)d2 + 480e5M

2N2K3 η2 ú2 d2 +

64e6M
6K(η6 + ú6) + 960e6M

4N2K(η2 + ú2) η2 ú2 +

e4K
9d8 + 40e5M

2K7(η2 + ú2)d6 + 240e6M
4K5(η4 +

ú4)d4 + 1440e6M
2N2K5 η2 ú2d4 + 448e7M

6K3(η6 + ú6)d2 +

6720e7M
4N2K3(η2 + ú2) η2 ú2 d2 + 256e8M

8K(η8 + ú8) +

7168e8M
6N2K(η4 + ú4) η2 ú2+ 17920e8M

4N4K η4 ú4 +

e5K
11d10 + 60e6M

2K9(η2 + ú2)d8 + 560e7M
4K7(η4 +

ú4)d6 + 3360e7M
2N2K7 η2 ú2 d6 + 1792e8M

6K5(η6 +

ú6)d4 + 26880e8M
4N2K5(η2 + ú2) η2 ú2 d4 + e6K

13d12 +

84e7M
2K11(η2 + ú2)d10 + 1120e8M

4K9(η4 + ú4)d8 +

6720e8M
2N2K9 η2 ú2 d8 + e7K

15d14 + 112e8M
2K13(η2 +

ú2)d12 + e8K
17d16 (13)

TABLE 1: Ki for 1PD

K3 ) 0.404114 K5 ) 0.738555× 10-1 K7 ) 0.166986× 10-1

K9 ) 0.401679× 10-2 K11 ) 0.988377× 10-3 K13 ) 0.245427× 10-3

K15 ) 0.611765× 10-4 K17 ) 0.152744× 10-4

TABLE 2: MiNjKk For 2PD

K3 ) 0.361870× 10 M2K ) 0.180935× 10 K5 ) 0.383151
M2K3 ) 0.191576 M4K ) 0.153803 M2N2K ) 0.377724× 10-1

K7 ) 0.695644× 10-1 M2K5 ) 0.347822× 10-1 M4K3 ) 0.289059× 10-1

M2N2K3 ) 0.587627× 10-2 M6K ) 0.259678× 10-1 M4N2K ) 0.293813× 10-2

K9 ) 0.144917× 10-1 M2K7 ) 0.724583× 10-2 M4K5 ) 0.619693× 10-2

M2N2K5 ) 0.104890× 10-2 M6K3 ) 0.567248× 10-2 M4N2K3 ) 0.524452× 10-3

M8K ) 0.532304× 10-2 M6N2K ) 0.349438× 10-3 M4N4K ) 0.175014× 10-3

K11 ) 0.319897× 10-2 M2K9 ) 0.159948× 10-2 M4K7 ) 0.140160× 10-2

M2N2K7 ) 0.197878× 10-3 M6K5 ) 0.130267× 10-2 M4N2K5 ) 0.989390× 10-4

K13 ) 0.728364× 10-3 M2K11 ) 0.364182× 10-3 M4K9 ) 0.325854× 10-3

M2N2K9 ) 0.383284× 10-4 K15 ) 0.169119× 10-3 M2K13 ) 0.845593× 10-4

K17 ) 0.398205× 10-4

TABLE 3: LiMjNkKt For 3PD

K3 ) 0.986843× 102 L2K ) 0.328948× 102 K5 ) 0.174299× 10
L2K3 ) 0.580997 L2M2K ) 0.102809 L4K ) 0.375379
K7 ) 0.235331 L2K5 ) 0.784436× 10-1 L2M2K3 ) 0.122344× 10-1

L4M2K ) 0.544126× 10-2 L4K3 ) 0.539749× 10-1 L6K ) 0.430923× 10-1

L2M2N2K ) 0.135187× 10-2 K9 ) 0.415069× 10-1 L2K7 ) 0.138356× 10-1

L2M2K5 ) 0.189294× 10-2 L4M2K3 ) 0.854536× 10-3 L6M2K ) 0.525465× 10-3

L4K5 ) 0.100497× 10-1 L6K3 ) 0.834066× 10-2 L2M2N2K3 ) 0.183872× 10-3

L4M2N2K ) 0.612907× 10-4 L8K ) 0.728973× 10-2 L4M4K ) 0.267781× 10-3

K11 ) 0.812204× 10-2 L2K9 ) 0.270735× 10-2 L2M2K7 ) 0.322907× 10-3

L4M2K5 ) 0.147694× 10-3 L4K7 ) 0.206153× 10-2 L6K5 ) 0.176615× 10-2

L2M2N2K5 ) 0.275193× 10-4 K13 ) 0.168125× 10-2 L2K11 ) 0.560418× 10-3

L2M2K9 ) 0.578203× 10-4 L4K9 ) 0.444777× 10-3 K15 ) 0.361099× 10-3

L2K13 ) 0.120366× 10-3 K17 ) 0.797076× 10-4

(a) for 1PD:

Ki ) ∑
n)∞

∞

′′
1

|n|i
(9)

(b) for 2PD:

MiNjKk ) ∑
m)∞

∞

′′∑
n)∞

∞

′′
minj

(m2 + n2)i+j+k/2
(10)

(c) for 3PD:

LiMjNkKt ) ∑
l)∞

∞

′′ ∑
m)∞

∞

′′∑
n)∞

∞

′′
l imjnk

(l2 + m2 + n2)i+j+k+t/2
(11)
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In order to test the accuracy of these formulae we consider a
central cell with only two counter-ions as depicted in Figure 1.
Particle 1 is always located at the origin (r1 ) 0), while particle
2 may be anywhere in the box. Without loss of generality, we
assumeD ) 1 and-q1 ) q2 ) 1. The central cell is divided
into mesh points with starting point at (0.05, 0.05, 0.05) and a
uniform increment of 0.1 in the three dimensions. We locate
particle 2 at the following mesh points, respectively:

(a) For 1PD: Noting the symmetry betweenx andy directions
in eq 12, for the central cell withλ e 2, we locate particle 2 at
the mesh points which satisfy 0< x e y < 2, and 0< z< 1.
The total number of the points is 2100.

(b) For 2PD: Noting the symmetry betweeny andzdirections
in eq 13, for the central cell withλ e 2, we locate particle 2 at
the mesh points which satisfy 0< x < 2, and 0< y e z< 1.
The total number of the points is 1100.

(c) For 3PD: Noting the symmetry betweenx, y, and z
directions in eq 14, for the central cell withλ ) 1, we locate
particle 2 at the mesh points satisfying 0< xe ye z< 1. The
total number of the points is 220.

For the different positions of particle 2, the exact values of
the electrostatic energy in the central cell can be directly
calculated from eq 3 over enough replicas in each periodic
dimension. In this study, the number of the replicas used in
each dimension is 2000 for 1PD and 2PD, and 500 for 3PD.
The electrostatic energy may also be obtained from eqs 7, 12,
13, and 14 for different periodic systems. Table 4 lists the
maximum errors of eqs 12-14 at the mesh points, and the total
energy errors of all the points. Here the total energy of each
system is the summation of the energy, when particle 2 is located
at different mesh points. The relative errors of these formulas
are rather high and exceed the value of 0.8%, the error limit of
eq 8 when-0.76e â e 3.34. The decrease of accuracy is
probably caused by the fact that the leading term of eq 8 has

been canceled. However, eqs 12-14 are still useful, because
they demonstrate the forms of the expansion formulas forΨ-
(r i,r j). We follow these forms and develop more accurate
formulas for Q in the following section.

2.3. General Expansion Method. In the previous section
we have used an eighth order polynomial to approximate the
function (1 + â)-1/2. However, the accuracy of the final
formulas forΨ(r i,r j) is worse than the expansion eq 8. If the
function (1+ â)-1/2 is approximated more closely by keeping
more terms in the expansion, the higher order terms ofâ will
make the expansion formulas very complex. An alternative
method is the general expansion method, which has been
developed to overcome this accuracy problem. Following eqs
12-14, we observe that any expansion series ofâ will result
in the following general forms forΨ(r i,r j):

(c) for 3PD:

Ψ(r i,r j) ) (e1K
3 + 4e2L

2K)d2 + (e2K
5 + 12e3L

2K3 +

48e4L
2M2K)d4 + 16e4(L

4K - 3L2M2K) (ê4 + η4 + ú4) +

(e3K
7 + 24e4L

2K5 + 240e5L
2M2K3 + 320e6L

4M2K)d6 +

80e5(L
4K3 - 3L2M2K3) (ê4 + η4 + ú4)d2 + 64e6(L

6K -

5L4M2K) (ê6 + η6 + ú6) + 1920e6(3L
2M2N2K -

L4M2K) ê2 η2 ú2 + (e4K
9 + 40e5L

2K7 +720e6L
2M2K5 +

2240e7L
4M2K3 + 1792e8L

6M2K)d8 + 240e6(L
4K5 -

3L2M2K5) (ê4 + η4 + ú4)d4 + 448e7(L
6K3 -5L4M2K3)

(ê6 + η6 + ú6)d2 + (40320L2M2N2K3e7 -

13440L4M2K3e7 + 107520L4M2N2Ke8 -

21504L6M2Ke8) ê2 η2 ú2 d2 + 256e8(L
8K - 7L6M2K)(ê8 +

η8 + ú8) + 256e8(70L
4M4K - 42L6M2K)(ê4 η4 + ê4 ú4 +

η4 ú4) + (e5K
11 + 60e6L

2K9 + 1680e7L
2M2K7 +

8960e8L
4M2K5)d10 + 560e7(L

4K7 - 3L2M2K7) (ê4 + η4 +

ú4)d6 + 1792e8(L
6K5 - 5L4M2K5) (ê6 + η6 + ú6)d4 +

1792e8(90L
2M2N2K5 - 30L4M2K5) ê2 η2 ú2 d4 + (e6K

13 +

84e7L
2K11 + 3360e8L

2M2K9)d12 + 1120e8(L
4K9 -

3L2M2K9) (ê4 + η4 + ú4)d8 + (e7K
15 +

112e8L
2K13)d14 + e8K

17d16 (14)

Figure 1. Cell with two counterions.

TABLE 4: Energy Errors of Eqs 12, 13, and 14 at the Mesh
Points

absolute
error

relative
error (%)

total energy
error (%)

eq 12 for 1PD 2.1× 10-2 115 1.6
eq 13 for 2PD 0.27 206 3.8
eq 14 for 3PD 0.60 466 4.3

(a) for 1PD:

Ψ(r i,r j) ) (e11 + e12d
2 + e13d

4 + e14d
6 + e15d

8 + ...)d2 +

(e21 + e22d
2 + e23d

4 + e24d
6 + e25d

8 + ...)ú2 + (e31 +

e32d
2 + e33d

4 + e34d
6 + e35d

8 + ...)ú4 + (e41 + e42d
2 +

e43d
4 + e44d

6 + e45d
8 + ...)ú6 + (e51 + e52d

2 + e53d
4 +

e54d
6 + e55d

8 + ...)ú8 + ... (15)

(b) for 2PD:

Ψ(r i,r j) ) (e11 + e12d
2 + e13d

4 + e14d
6 + e15d

8 + ...)d2 +

(e21 + e22d
2 + e23d

4 + e24d
6 + e25d

8 + ...) (η2 + ú2) +

(e31 + e32d
2 + e33d

4 + e34d
6 + e35d

8 + ...) (η4 + ú4) +

(e41 + e42d
2 + e43d

4 + e44d
6 + e45d

8 + ...) (η6 + ú6) +

(e51 + e52d
2 + e53d

4 + e54d
6 + e55d

8 + ...) (η8 + ú8) +

(e61 + e62d
2 + e63d

4 + e64d
6 + e65d

8 + ...)η2ú2 + (e71 +

e72d
2 + e73d

4 + e74d
6 + e75d

8 + ...)η4ú4 + (e81 + e82d
2 +

e83d
4 + e84d

6 + e85d
8 + ...) (η2 + ú2)η2ú2 + (e91 + e92d

2 +

e93d
4 + e94d

6 + e95d
8 + ...) (η2 + ú2)η4ú4 + ... (16)
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whereeij are constants for each periodic system. Instead of
following the method of section 2.2, we evaluate these constants
by optimization in such a way that the energy calculated by
eqs 15-17 can best fit the exact values at the mesh points in
the cell of Figure 1. Using the least-squares method, we obtain
the constants in Tables 5-7. These constants are generally valid
for systems containing many particles, because the interactions
between two particles are determined only by their relative
positions.
Table 8 summarizes the energy errors calculated from the

above formulas with the above coefficients. A comparison
between Tables 4 and 8 shows that the accuracy of these
formulas has been dramatically improved at every mesh point.
Furthermore, the total energy errors of the systems remain very
small. Calculations at other nonmesh points also reveal that
these equations manifest the same order of accuracy. This
implies that eqs 15-17 represent correctly the variations ofΨ-
(r i,r j) in the periodic systems. Because far more mesh points
have been used for 1PD and 2PD than for 3PD, eqs 15 and 16
have larger errors than eq 17. However, eqs 15 and 16 are
valid over a wider range of conditions (λ e 2).
We have also tried to include more coefficients in eqs 15

and 16 in order to increase the accuracy. However, the
improvement achieved by including more terms is not signifi-
cant. It must be pointed out that if we only consider smaller
systems (λ e 1.5), the same number of constants as in Tables
5 and 6 can make eqs 15 and 16 reach very high accuracy. In

this case, the constants are different from those in Tables 5 and
6 and should be determined by the least-squares method for a
smallerλ. Considering that in practical simulations statistical
errors due to limited simulation time are of the order of 3%,
we believe that the eqs 15 to 17 with the constants in Tables
5-7 are adequate and may be applied to most practical
simulations.
It must be pointed out that in some practical applications

involving slabs or cylinders, there are image forces arising
between charges and the wall. These forces depend on the
dielectric properties of the wall and play an important role in
the determination of the behavior of the charges next to the
wall. This paper presents a mathematical model for the
calculation of the long-range forces and does not explicitly
account for these image forces. However, if one knows the
particular form of the image forces and if these forces are long-
range forces, then the same mathematical technique and the
same formulas can be used with relative ease for the calculation
of all the interactions, including image forces, between wall
particles and other charges in the periodic systems under
consideration.
Regarding the dielectric behavior of the systems studied, in

the strictly periodic three-dimensional system, the images extend
to infinity in all three dimensions. Because of this, one does
not need to make any assumptions about the dielectric behavior
of the surroundings. The dielectric behavior of the system may
then be directly obtained from the MD simulations. In the case
of the one- and two-dimensional systems, one does not need to
make any assumptions about the surroundings in the periodic
directions. However, one needs to make an assumption about
the way of interaction between the wall and the other charges
in the (nonperiodic) directions constrained by the walls. For
example, one may prescribe a certain charge distribution at the
wall particles and then use the GENB method, as described
above, to investigate how the dielectric behavior of the system
will be affected by the prescribed distribution of charges.

3. Neighbor-Box Technique

3.1. Interpolation Scheme. If we calculate the energy of
the system directly from eq 7 and the general expansion

(c) for 3PD:

Ψ(r i,r j) ) (e11 + e12d
2 + e13d

4 + e14d
6 + e15d

8 + ...)d2 +

(e21 + e22d
2 + e23d

4 + e24d
6 + e25d

8 + ...) (ê4 + η4 + ú4) +

(e31 + e32d
2 + e33d

4 + e34d
6 + e35d

8 + ...) (ê6 + η6 +

ú6) + (e41 + e42d
2 + e43d

4 + e44d
6 + e45d

8 + ...) (ê8 +

η8 + ú8) + (e51 + e52d
2 + e53d

4 + e54d
6 + e55d

8 +

...) ê2 η2 ú2 + (e61 + e62d
2 + e63d

4 + e64d
6 + e65d

8 + ...)

(ê4η4+ ê4 ú4+ η4 ú4) + ... (17)

TABLE 5: eij for 1PD and λ e 2 (Other eij ) 0)

j ) 1 j ) 2 j ) 3 j ) 4 j ) 5

i ) 1 -0.2077424E+00 0.3428627E-01 -0.7106388E-02 0.9221446E-03 -0.4758371E-04
i ) 2 0.6525880E+00 -0.3325861E+00 0.1061282E+00 -0.1659468E-01 0.9557752E-03
i ) 3 0.9311387E-01 0.1294186E+00 -0.1014672E+00 0.2175868E-01 -0.1449539E-02
i ) 4 0.4547276E+00 -0.6302982E+00 0.2784920E+00 -0.4824246E-01 0.2844989E-02
i ) 5 -0.7632409E-01 0.2246102E+00 -0.1210333E+00 0.2276231E-01 -0.1396308E-02

TABLE 6: eij for 2PD and λ e 2 (Other eij ) 0)

j ) 1 j ) 2 j ) 3 j ) 4 j ) 5

i ) 1 -0.1816724E+01 -0.1699775E+00 -0.4174220E-01 -0.9328132E-02 -0.9021478E-03
i ) 2 -0.2735749E+01 -0.8144851E+00 -0.2867662E+00 -0.6810108E-01 -0.6941093E-02
i ) 3 -0.6560462E+00 -0.3418037E+00 -0.1039581E+00 -0.1847906E-01 -0.9708847E-03
i ) 4 -0.3093328E+00 -0.6165123E+00 -0.3198507E+00 -0.6095910E-01 -0.3863707E-02
i ) 5 -0.3261200E+00 -0.1267820E+00 -0.1961777E-01 -0.1235827E-01 -0.1161693E-02
i ) 6 -0.9631366E+00 -0.3292370E+00 -0.3165100E-01 -0.1012508E-01 -0.3040349E-02
i ) 7 -0.1008012E+01 -0.4574110E+00 -0.6432559E-01 -0.7212198E-02 -0.7874020E-03
i ) 8 -0.5285276E+00 -0.1029238E+01 -0.4744796E+00 -0.7867250E-01 -0.4695472E-02
i ) 9 -0.4604183E+00 -0.1477914E+00 -0.2303130E+00 -0.5850997E-01 -0.4454742E-02

TABLE 7: eij for 3PD and λ ) 1 (Other eij ) 0)

j ) 1 j ) 2 j ) 3 j ) 4 j ) 5

i ) 1 -0.1624441E-03 -0.1840786E+00 -0.1360559E+00 -0.2026793E+00 -0.1069545E-01
i ) 2 -0.3119160E+00 -0.3209188E+00 -0.6623410E-01 -0.1626264E+00 -0.2577575E-01
i ) 3 -0.1181618E+00 -0.1265090E+01 -0.8145192E+00 -0.3992228E+00 -0.6944240E-01
i ) 4 -0.1140781E+01 -0.7393993E+00 -0.3010605E+00 -0.1284144E-01 -0.1827551E-01
i ) 5 -0.7151641E+00 -0.2737381E+01 -0.1160333E+00 -0.7387805E-01 -0.2794727E-01
i ) 6 -0.1494817E+01 -0.2071101E+00 -0.1467369E+00 -0.7977268E-01 -0.6923794E-02
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equations, the total number of operations will be proportional
to N2, whereN is the total number of particles in the central
cell. Since the computational complexity ofN2 is an obstacle
for large systems, it is necessary to develop more efficient
algorithms to calculate the energy of the system.
For the case of short-range interactions we have developed

the neighbor-box technique in order to improve the computa-
tional efficiency. The basic premise of this technique is that
the minimum images are subdivided into many boxes, as shown
in Figure 2. The sides of each box are longer than the highest
cutoff radius of all the short-ranged interactions. The neighbor
boxes of a given box are these, which have at least one common
point with the given box. Those boxes, which are outside the
central cell but are located inside the minimum images, should
also be taken into account in the neighbor boxes. The particles
in the same box or its neighbor boxes are called neighbor
particles. To calculate the forces on a particle in the given box,
we only take into account the interactions between this particle
and the neighbor particles. The essence of this method is similar
to the link-cell method.20

We modify and extend the neighbor-box method to the
computation of long-range interactions. The basis of the
calculations is that for a particle in the given box, the long-
range interactions between this particle and the neighbor
particles are calculated directly, while the interactions between
this particle and particles outside the neighbor boxes are obtained
by interpolation. There is an intrinsic assumption in this method
that the interactions between neighbor particles may vary sharply
with distance, while the interactions between nonneighbor
particles will change slowly with distance.
We assume that the total box number in the central cell is

M. For a given box,m, in the central cell, the number of the
neighbor particles isNm, and the number of the nonneighbor
particles within the minimum images isNm. For 1PD,Nm )

3NNm; for 2PD, Nm ) 9NNm; and for 3PD,Nm ) 27NNm.
Noting that |n| e 1 corresponds to the particles within the
minimum images, we may express eq 7 as

with

and

where the particle i is located in the boxm, and∈ indicates
that the particlej belongs toNm or Nm.
In MD simulations, we have to calculate the electrostatic

forces on a particle, i.e.,Fi ) -∇iE, where∇i means the gradient
with respect tor i. In this case, we have

with

Because the minimum images are divided into many small
boxes,Nm is generally much smaller thanNm. Therefore, in
the computation of the energy and the forces, the total number
of operations is mainly determined by the calculation ofE2 and
Fi2. In this study, the interpolation method is used to reduce
the computation of these terms.
Two kinds of boxes are considered: one is the trilinear

element with 8 nodes and the other is the complete quadratic
element with 27 nodes, which are depicted in Figures 3 and 4.
The first is widely used in the finite element method.21, 22 We
first calculate the value ofΦ at those nodes of the box, i.e.,
Φ(rnode). Then for every particle in the box,Φ(r i) and∇iΦ(r i)
are obtained by interpolation from the nodes at the particle
position r i. Because the node number of a box is in general
much less than the particle number in the box, the total number
of operations in a given box can be substantially reduced.
We first consider the interpolation functions on the two line

elements of Figure 5. The potentials are known ata1 ) -1

Figure 2. Central cell and the minimum images divided into smaller
boxes. To the boxm in the central cell, those boxes indicated bynm
are its neighbor boxes.

TABLE 8: Energy Errors of Eqs 15, 16, and 17 at the Mesh
Points

absolute
error

relative
error (%)

total energy
error (%)

eq 15 for 1PD 1.6× 10-2 3.2 4.8× 10-3

eq 16 for 2PD 6.2× 10-3 3.0 1.5× 10-4

eq 17 for 3PD 5.0× 10-4 0.98 5.3× 10-5

Figure 3. The 8-node box (trilinear element).

E) E1 + E2 (18)

E1 )
1

2
∑
i)1

N

∑
j∈Nm

qiqj

|r ir j|
, E2 )

1

2
∑
i)1

N

qiΦ(ri) (19)

Φ(r i) ) ∑
j)1

N qj

D
Ψ(r ir j) + ∑

j∈Nm

qj

|r ir j|
(20)

Fi ) Fi
1 + Fi

2 (21)

Fi
1 ) -qi ∑

j′∈Nm
∆i( qj

|r i,r j|), Fi
2) -qi∆iΦ(r i) (22)
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anda2 ) 1 for the 2-node element, or ata1 ) -1, a2 ) 0, and
a3 ) 1 for the three-node element. For any point,a, in the
elements, the potential may be approximated by an interpolation
from the known nodes:

wheren is equal to 2 for the 2-node element and 3 for the 3-node
element,Φ(ak) is the potential at thekth node, andh(a,ak) is an
interpolation function which is similar to the one used in the
finite element method:22

whereSk ) -1 if ak ) 0; otherwise,Sk ) 1.
The interpolation accuracy is of first order for the 2-node

element and of second order for the 3-node element. The above
two expressions can be used to construct the interpolation
functions for the 8-node box and the 27-node box: Let the
central cell be uniformly divided intoMx,My, andMz segments
in thex, y, andz directions, respectively. Then the number of
boxes in the central cell isM ) MxMyMz, and the three sides of
each box areLx ) Dx/Mx, Ly ) Dy/My, andLz ) Dz/Mz, where
Lx, Ly, andLzmust be longer than the highest cutoff radius of
all the short-range interactions. For any point (x,y,z) in the box
with center at (x0,y0,z0), it is convenient to introduce the local
coordinates:

Obviously,-1 e a,b,c e 1. The potential at thekth node of
the box,Φ(rnode k), is directly calculated from eq 20, where
rnode k is the location of thekth node of the box in space. Then
the potential at (a,b,c) is found by interpolation:21

wheren is 8 for the 8-node box and 27 for the 27-node box,
(ak,bk,ck) is the node position shown in Figures 3 and 4,h
corresponds to eq 24 for the 8-node box and eq 25 for the 27-
node box. The gradient of the potential is expressed as follows:

We can use eqs 27-30 to calculateΦ(r i) and∇iΦ(r i) on every
particle in the central cell. Then, the energy of the system and
the forces on every particle are calculated from eqs 18 and 21.
The accuracy of the interpolations is mainly determined by

the node numbers and the box sizes. Generally, the 27-node
box generates a higher accuracy, while the computational speed
of the 8-node box is faster. In this scheme, the interactions
between neighbor particles are directly calculated and only the
interactions of nonneighbor particles are obtained by interpola-
tion. Therefore, with the same node numbers, the larger the
box the more accurate is the interpolation. This is different
from the traditional finite element theory, where smaller
elements lead to higher accuracy.
3.2. The GENB Method. The combined general expansion

and neighbor-box method (GENB) for the calculation of the
energy and forces, which includes both the short-range and long-
range interactions on every particle in the central cell, may be
implemented as follows:
Step 1: Divide the minimum images into many boxes, the

sides of each box being larger than the highest cutoff radius of
all the short-range interactions. Then determine the neighbor
boxes of each box.
Step 2: For every particle in a given box, calculate the short-

range interactions and the electrostatic interactions between this
particle and other particles within this box and the neighbor
boxes. Hence, obtainE1 from eq 19 andFi1 from eq 22.
Step 3: CalculateΦ(rnode k) at the nodes of each box from

eq 20. Use eqs 15-17 for the different periodic systems.
Step 4: For every particle in a given box, interpolateΦ-

(rnode k) to the particle position to obtainΦ(r i) by eq 27, or
calculate the gradient ofΦ(r i) by eqs 28-30. Then obtainE2
by eq 19 andFi2 by eq 22. Thus, calculate the energy of the
system and the forces on every particle.
An estimation on the operations of the above steps is as

follows. We assume that the minimum images of the system
is g1, and the average number of the neighbor boxes isg2. Then
the operations from steps 2 to 4 are proportional toNNm, nM(N
+ Nm), andnN. Generally,Nm ≈ g2N/M, andNm ≈ g1N -

Figure 4. The 27-node box (complete quadratic element).

Figure 5. Line elements.

Φ(a) ) ∑
k)1

n

h(a,ak)Φ(ak) (1e ae 1) (23)

for the 2-node element:

h(a,ak) ) 0.5(1+ aka) (24)

and for the 3-node element:

h(a,ak) ) 0.5[1Sk + aka+ (1.5- 0.5Sk)Ska
2] (25)

a)
2(x- x0)

Lx
,
2(y- y0)

Ly
,
2(z- z0)

Lz
(26)

Φ(a,b,c) ) ∑
k)1

n

h(a,ak)h(b,bk)h(c,ck)Φ(rnode k) (27)

∂Φ

∂x
)

2

Lx
∑
k)1

n ∂h(a,ak)

∂a
h(b,bk)h(c,ck)Φ(rnode k) (28)

∂Φ

∂y
)

2

Ly
∑
k)1

n ∂h(b,bk)

∂b
h(a,ak)h(c,ck)Φ(rnode k) (29)

∂Φ

∂z
)

2

Lz
∑
k)1

n ∂h(c,ck)

∂c
h(a,ak)h(b,bk)Φ(rnode k) (30)
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g2N/M. Consequently, the total number of operations,T, is
approximately

where the coefficientsc1, c2, and c3 are determined by the
practical programming methods. WhenM ) [c1g2N/c2n(1 +
g1)]1/2, the operations reach the minimum value, which isT )
[4c1c2ng2(1 + g1)]1/2N3/2 + (c3 - c2g2)nN. That is, if M is
properly selected, the total number of operations is proportional
to N3/2. We have to point out that, although theO(n log n)
algorithms using fast Fourier transformations9,10 are more
efficient for 3PD, the GENB method can be easily used to study
different periodic systems.

4. Simulation of Water Molecules in a Cylindrical Pore

Many computer studies on the equilibrium statistical proper-
ties of water molecules near walls have been reported in the
past decade.23-30 These investigations include water molecules
on hydrophobic and hydrophilic walls, and ionic solutions. In
order to study the computational efficiency and accuracy of the
neighbor-box technique, we use the GENB method to simulate
water molecules in a cylindrical carbon pore. This study may
also be used to calculate statistical properties of a solvent in a
fine capillary, an important problem of biological and industrial
membranes.
The wall of the pore consists of 10 rings, each having 17

equally spaced carbon atoms on a circle of radiusRw ) 12.244
Å. The rings are placed in a way that atoms form a triangular
lattice on the cylinder surface. The diameter of the wall atoms
is σw ) 3.2 Å and the height of the cylinder is 22.627 Å. We
use 200 water molecules in the simulation, where the water-
water potential is determined by the SPC/E model.31 We assume
that the effective radius of the pore is 3.024 Å narrower than
Rw. The value 3.024 is obtained from the zero-potential point
of a structureless carbon plane.27 Such a system corresponds
to a bulk density of 1 g/cm3. The interactions between water
and carbon atoms are given by the Lennard-Jones potentials
and the required parameters are chosen asσWO ) 3.183 Å,σWH

) 2.942 Å, εWO ) 0.125 kcal/mol, andεWH ) 0.0772 kcal/
mol. The temperature of the system is kept at 29.5°C by the
Nosé-Hoover isothermal dynamics.32 The SHAKE procedure33

is used to maintain the internal geometry of the SPC/E
molecules. A cutoff radius of 7.5 Å is used for all short-range
interactions. The Verlet algorithm34 is used with time step 2
fs. The initial state is obtained by using the 27-node box under
(Mx,My,Mz) ) (2,2,2) to run 100 000 steps from a random
configuration. We choose five configurations of water mol-
ecules as the reference states. This corresponds to the con-
figurations obtained by running another (n - 1)100 steps from
the initial state, where the integern varies from 1 to 5. All the
simulations in the present work were carried out in an IBM
RISC/6000 workstation.
Table 9 shows the computational time and accuracy with

different box numbers and box nodes. For the reference states
mentioned above, the exact values of the forces on every water
molecule are calculated without using the neighbor-box tech-
nique, in order to compare the accuracy of different interpolation
schemes at the same instant. The average force on every water
molecule is about 8.11g/F in the five reference states. In Table
9 the absolute error is the maximum value in the five reference
states. The relative error is defined as the ratio of the absolute
error to the average force on every molecule. With the same
box division (Mx,My,Mz), the 27-node box is more accurate than
the 8-node box. It is apparent that the most accurate scheme is

the 27-node box under the divisions (1,1,1) and (2,2,1), which
has a relative error less than 0.5%. The 8-node box under the
divisions (1,1,1) and (2,2,1) also has reasonable error limits
(<2.5%). If the box numbers in the constraint directions are
less than 3, in most regions the electrostatic interactions between
the molecules are directly calculated without interpolation errors
by the GENB method. Therefore, the central cell can be divided
by half in the constraint directions, without affecting the
accuracy significantly. The 27-node box under the division
(2,2,2) may also be used for practical simulations if simulation
time is the main constraint. Since the interpolation error is more
sensitive to the box size in the periodic direction, the box size
in this direction should not be much smaller than the constraint
sides.
In Table 9 the CPU time to run 100 steps without using the

neighbor-box technique is used as the unit of time. Then the
CPU time of the other schemes to run 100 steps is compared
with this time. We note that the neighbor-box technique
demonstrates a substantial time reduction in all the cases
considered. Under the same condition, the 8-node box is
generally faster than the 27-node box as expected. The fastest
speed is reached by the 8-node box with (Mx,My,Mz) ) (3,3,3).
However, the error introduced under some conditions is unac-
ceptable. For this problem, we recommend the 27-node box
with (Mx,My,Mz) ) (1,1,1), (2,2,1), or (2,2,2).
It is evident that when a particle traverses through a cell side

and finds itself into another cell, there is a discontinuity in the
calculated values of energy and force. We considered the
magnitude of this discontinuity and found out that it is of the
same order as the magnitude of the errors listed in Table 8.
This occurs because Table 8 lists the maximum energy error
on every particle over different configurations of the system.
In these configurations several particles have definitely traversed
through the side of their cell into one of the neighboring cells.
The discontinuity/error is caused mainly by the interpolation
scheme in the neighbor-box technique and its order of magnitude
remains the same when a particle traverses through a cell.
We have used the 27-node box with (Mx,My,Mz) ) (2,2,2) to

simulate water molecules over 500 000 steps from the initial
state. The density distributions of oxygen and hydrogen atoms
are shown in Figure 6, whereFO(r) andFH(r) are normalized
by the number density of bulk water and the dotted lines
correspond to the bulk values. We note that the density
oscillations of the oxygen and hydrogen atoms are not so
pronounced as the distribution of a simple fluid (like argon)
near the wall. In the work of Zhu and Robinson27 the hydrogen
density at the first peak near a neutral wall is larger than the
bulk value, while Figure 6 shows that this number is smaller

T) c1g2
N2

M
+ c2nM(N+ g1Ng2

N
M) + c3nN (31)

TABLE 9: Force Errors on Molecules at the Reference
States and the Relative Time To Run 100 Steps for Different
Schemesa

nodes (Mx,My,Mz)
absolute
error (γ/σ)

relative
error (%)

relative
time

8 (1,1,1) 0.20 2.5 0.61
8 (2,2,2) 1.79 22 0.36
8 (3,3,3) 2.12 26 0.34
8 (1,1,2) 1.93 23 0.35
8 (2,2,1) 0.19 2.3 0.61
8 (3,3,1) 2.11 26 0.52
27 (1,1,1) 0.03 0.4 0.65
27 (2,2,2) 0.37 4.6 0.47
27 (3,3,3) 0.92 11 0.88
27 (1,1,2) 0.76 10 0.40
27 (2,2,1) 0.04 0.5 0.67
27 (3,3,1) 1.87 23 0.81

a The unit of time is the CPU time to run 100 steps without using
the neighbor-box technique.
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than the bulk value of 2. This difference is attributed to the
fact that, in the present work,εWO andεWH are much weaker
than the energy depth of a 10-4-3 wall used in the work of Zhu
and Robinson.27 It is also observed that the hydrogen atoms
can approach the wall more closely than the oxygen atoms. This
happens because hydrogen atoms are relatively small and water
molecules tend to orient with the hydrogen atoms toward the
wall.
In order to demonstrate the detailed structures of water

molecules near the wall, we select a wall atom on the surface
of the pore together with its neighbors and then study the density
distributions of water molecules in the three layers above this
atom. This selection around a central atom (atx ) y ) 0) is
depicted in Figure 7. In this case, each layer in thez direction
has a width of 1 Å as indicated in Figure 6. The detailed
concentrations of the oxygen and hydrogen atoms at the three
layers around the central atom are shown in Figure 8. We
observe that in the first layer both the hydrogen and the oxygen
atoms locate preferentially at adsorption sites, which are denoted
by the letter A in Figure 7. Due to the core repulsion the oxygen
atoms will not stay on the top of the wall atom. The second
layer corresponds to the first density peak near the wall. In
this layer the oxygen atoms still prefer to locate at the adsorption
sites, while the distribution of hydrogen atoms becomes less
ordered. The third layer contains the first density valley near
the wall. In this layer, the densities of both the hydrogen and
oxygen atoms are higher on the top of the wall atoms than at
the adsorption sites. This is due to the lack of atoms in the
corresponding lower layers. The fact that water is unable to
effectively “wet” the carbon wall has a significant effect on the
dynamic behavior of water such as viscosity and velocity
distributions.
It must be pointed out that one can extend the GENB method

to noncubic, complex-geometry systems of two or three dimen-
sions. For this purpose, one may define the parametersa )

Dx/D, b ) Dy/D, andc ) Dz/D, whereDx, Dy, andDz are the
lengths of the cell in the three dimensions andD is a
characteristic dimension. Hence, the magnitude of the distance
between the positions of particles u and v and all of its images
can be represented as follows:

where the vectorsi, j, andk are the unit vectors in the three
dimensions and the integersl,m, andn vary from minus infinity
to plus infinity. Hence we may write for the distance dr

In this case,â is a function ofa, b, c, l,m, n, r(u), andr(V) and,
for a given geometry,a, b, andc are constants. One may follow
the same procedure as in the previous sections and obtain the
general expansion form for the energy function. The pertinent
coefficients may be obtained by fitting the exact energy of a
particular system by the least square method. This procedure
can be easily adapted to complex two-dimensional systems,
whereDx ) Dy.

5. Conclusions

The general expansion method has been developed to
calculate the long-range interactions due to the particles outside
the minimum images, for three kinds of periodic systems. The
derived formulas are valid, even if the charge neutrality
condition is not satisfied. In this case the potential at a point
should be interpreted as the relative potential, that is the
difference between the real potential and a uniform background
potential. We have presented the expansion coefficients forλ
e 2 for 1PD and 2PD, and forλ ) 1 for 3PD. It must be
pointed out that the general expansion method is very versatile
and may be further extended to complex systems, such as the
central cell with different geometries, or particles with dipole-
dipole interactions.
The neighbor-box technique is also used to improve the

computational efficiency of long-range interactions. The tri-
linear element with 8 nodes and the complete quadratic element
with 27 nodes are considered. Under the same conditions, the
27-node box is more accurate while the 8-node box is more
efficient in computations. Larger box size leads to higher
accuracy under the same node numbers. The combination of
the general expansion method and the neighbor-box technique
is the GENB method. If the total box number is optimized,

Figure 6. Density profile of oxygen and hydrogen atoms in the
cylindrical pore. O; oxygen atoms; H; hydrogen atoms. The dotted lines
correspond to the bulk values of oxygen and hydrogen atoms; the dashed
lines indicate three layers near the wall.

Figure 7. Wall atoms. A: the adsorption site.

Figure 8. Structure of water molecules near a wall atom. The positions
of the three layers are indicated in Figure 6.

dr ) | rb(u) - rb(V) + D(al ıb - bmjb + cnkB )| (32a)

dr ) D(a2l2 + b2l2 + c2l2)1/2 (1+ â)1/2 (32b)
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the GENB method renders the operation of long-range interac-
tions proportional toN3/2.
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