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The general expansion method is developed to calculate long-range interactions due to charged particles
outside the minimum images, for different periodic systems in molecular dynamics and Monte Carlo
simulations. The expansion coefficients are obtained by the least-squares method. The neighbor-box technique
is also developed to calculate long- and short-range interactions within the minimum images. The interactions
between neighbor particles are directly calculated, while the interactions between nonneighbor particles are
obtained by interpolation. The combination of the general expansion (GE) method and the neighbor-box
(NB) technique, named as the GENB method, renders the computation of long-range interactions proportional
to N®2, whereN is the total number of particles in the central cell. Most importantly, the GENB method can

be easily used to study different periodic systems. As an example, water molecules in a cylindrical pore are
simulated to demonstrate the computational efficiency and accuracy of the neighbor-box technique under
different conditions.

1. Introduction The aim of this paper is to present a new algorithm in order
to calculate the long-range interactions in different periodic
systems. We first develop a general expansion method to
calculate the electrostatic energy and the potentials in the central
cell, due to the contributions of particles outside the minimum
images. Then the neighbor-box technique is introduced and
used to calculate the short-range interactions and to interpolate
the long-range interactions to every particle in the central cell.
The combination of the general expansion (GE) method and
the neighbor-box (NB) technique renders the computational
complexity of long-range interactions proportionaN#?, where

N is the total number of particles in the central cell. In the
final section we use the GENB method to simulate water
molecules in a cylindrical pore.

A major obstacle in molecular dynamics (MD) and Monte
Carlo (MC) simulations is the excessive amount of CPU time.
An important contributor to this is the calculation of the
electrostatic force between charged particles, which is a long-
range interaction. Since this interaction varies slowly with the
distance between particles, several hundred replicas of the
central cell in each periodic dimension are needed in order to
obtain convergent results.

A number of different methods have been used to take long-
range interactions into account. The Ewald summation method
is widely used for computing the electrostatic energy due to an
infinite array of point-charge images in periodic systémrs.
Transformation algorithnishave also been developed to speed
up the computations of the summations, and improved algo-
rithms of the orden(log n) using fast Fourier transforms have 2. The General Expansion Method
been reporte@1° The reaction field methdd 15> assumes that
the surrounding medium beyond a cutoff distance is a dielectric 2 1 Epergy and Potentials in Periodic Systems.We
continuum, and the field produced at the center of the truncation consjder a central cell dfi particles with charges; (i = 1, N)

sphere, by the polarization of the medium outside the sphere, nger periodic conditions. The computer simulation is carried
is the Onsager reaction field. In the expansion methods, the gt in a box of dimension®,, Dy, andD, in the x, y, andz

lattice sums of the long-range interactions in periodic systems girections, respectively. The characteristic length of the central

may be expressed in terms of Bessel functibnsr by — ce|l D, will be defined later for different systems. It is
multipoles:”1® Recently, efficient algorithms based on multi-  ¢onyenient to introduce a dimensionless geometric parameter
pole expansion techniques have been develéped. 2 as follows:

Despite the large amount of work in the past years, several
problems concerning the calculation of long-range interactions _ D, D, D,
for the above methods still remain unsolved. For example, the A= ma D'D’'D @

Ewald summation method was originally developed for a cubic . Lo o o
central cell extended periodically in three dimensions. There- 1hrée kinds of periodic systems are often used in simulations:

fore, for periodic systems constrained by walls, the Ewald (&) One periodic dimension (1PD): The central cell is
summation method is not valid. The reaction field method is 'eplicated infinitely in thez direction and the other dimensions
not strictly consistent with the periodicity of the system, and are constrained by V\(alls. We define the characteristic length
the existence of boundary walls also introduces difficulties in D asD = Dz, If D, IS larger tha”D_x and Dy, thend = 1
calculating the reaction field. The expansion methods have been®therwise4 > 1. In this study we will consider systems with
used to study periodic systems between pl#fieslowever, it = 2.
is still necessary to develop more efficient algorithms for the
cells of complex shapes.

(b) Two periodic dimensions (2PD): The central cell is
replicated infinitely in they andz directions, while the sides in
the x direction are constrained by walls. We assubye= D,

* Author to whom correspondence should be addressed. :.D- If Dis 'afgef thaer, thenld = lQ.OIherW'Se/l > 1. 1In
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(c) Three periodic dimensions (3PD): The central cell is electrostatic force. Because the electrostatic potential varies
replicated infinitely in all the three dimensions. This is an slowly with distance, the summations in eq 5 must be carried
unconfined system. In this case the central cell is a cube, i.e.,out for at least several hundreds replicas in each periodic

D = Dy =Dy =D, andi = 1. dimension. Therefore, it is not realistic for any practical
The dimensionless distances between two pairts(x;.y;.z) computer simulations to directly use eq 5 to calcule;,r;).
andrj = (x,y;,3) in the central cell are defined as For this reason we use the expansion method in order to facilitate
the calculation. This method fields the summations indicated
X=X Yi Y, Z—Z in eq 5 independently of the particles’ relative positidns;,
- D’S, y = ID - Dﬂ P=E+ 2+ 2 anqu. p y p positidhns;

(2) 2.2. Finite Expansion Method. The function (14 8)~12

We express the electrostatic energy of the central cell in a IS €xpressed as a power serieséofy, and £, and then the

general form for the three periodic systems as follows: variables are taken out of the summation operations. The
function (1+ B)~Y2 may be expanded as a Taylor series or

1NN ® 1 1N N Legendre polynomials. These methods have two major
E=- Zqiqj Z _ = Zqiqj¢(ri,rj) 3 limitations: First, the absolute value gfmust be less than 1
255 ifmolr — 1+ DNl 25(E for convergence. Second, many terms are needed in order to
keep the truncation errors small. The function38)~12 can
whereg(ri,rj) is the electrostatic potential at pointdue to a be replicated by a series of polynomials &f For the three
unit charge atrj and all of its images. The prime symbol periodic systems considered hefevaries in the range-0.75

indicates that the term for whidh; —r; + Dn| = Ois neglected. = < g < 3.25. Hence, we consider the following eighth-order
The sum oven is a sum over the lattice vectors. For 3RD,  gpproximation:

= lix + miy + ni, where {xiy,i,) are the unit vectors in the

three dimensions andi,ify,n) are integers; for 2Py = miy + 1 ) 3 4 5
ni; and for 1PDn = ni,. The central cell corresponds o= ——sregteftef tef +tef teft

0, and the minimum images consist of these replicas satisfying 1+5)

In| < 1. Hence, the minimum images of 1PD, 2PD, and 3PD eaﬁe + e7ﬂ7 + eaﬁs (8)
have 3, 9, and 27 replicas, respectively. The summations in

¢(rirj) may be separated into two parts: the first one is the \yhere the constants (i = 0, 8) are chosen in such a way that
contributions of the particles in the minimum images, and the (¢or the range of interest) the values of{18)~2 can be best
second part includes the interactions of particles in other replicas: it by the right-hand side of eq 8. Using the least-squares

1 1 1 method we obtain the following coefficients:
) ==w(rr)+ ) ——— 4
B(ri,r)) D (rir;) A=ilr; — 1+ Dn| ) €y 1.0023844p,, —0.4728575g,, 0.3087774;
e,, —0.3916828g,, 0.5303276g;, —0.4061865;

whereW(r;,r;) is a dimensionless quantity due to the contribu- _ —1.
tions of particles outside the minimum images. For 3PD, this € 0.16378608,, —0.3299228< 10
quantity is &, 0.2623945¢ 102

© x @ 1 The relative error of this eq is less than 0.8% in the ranQer6

=53 "y 6)  =p=334

& - 2 2 22\1/2 1/2
= e == (I74 "+ n)7(1 + f) From eq 6 the powers ¢f can be further expanded in terms

of &, i, andg. After substituting eq 8 into eq 5, the summations
for I, m, andn can be accomplished independent of the variables
> &, n, andg. The odd powers of, m, andn cancel out, due to
_ 28 +227;m + 252 +d (6) symmetry. We must emphasize that, in this procedure the first
1>+ n?+n term ey in eq 8 corresponds to a series, which is divergent as
the summations fol, m, andn are carried out to infinity. If
the central cell satisfies the charge neutrality condition, the
contributions of the positive and negative charges cancel each
other. Therefore, this term may be ignored. On the other hand,
if there is a net charge in the system, the potential due to this
term corresponds to a large constant, which tends to infinity as
the summations fol, m, andn are carried out to infinity. In
Yhis case the terngy introduces a large uniform background
potential. Again we may ignore this uniform potential without
affecting the dynamic properties of the system, because only
the differences of the potential affect the motion of particles. It
must be pointed out that, because the system considered is
periodic, and because the periodicity is intrinsic in the calcula-
tions, the removal of the background potential does not render
(7) the system a nonconducting one. Therefore, after neglecting
the divergent terng, the expansion formulas are still valid to
net-charge systems. In the latter case, the potential to be
Although eq 5 is divergent, we will show in section 2.2 that considered is the relative potential, that is, the difference between
the divergent term does not matter in the calculation of the the real potential and the uniform background potential.

with

B

The double primes indicate summations which exclude the
minimum images. We can expregf,rj) for 1PD and 2PD
in a similar way. If the summation fdris dropped out (i.el,
= 0) from egs 5 and 6, we obtaif(r;,r;) andg for 2PD; and
if the summations fol andm are dropped out (i.el,= m= 0)
from egs 5 and 6, we obtaig(ri,r;) andg for 1PD. For the
three periodic systems considered here, we obtain the range
of g as follows: for 1PD and < 2, —0.75< f < 3.25; for
2PD andl < 2, -0.75< 8 < 1.75; and for 3PD and = 1,
—0.75< f < 1.25.

The total energy of the system may be expressed in the
following form:

1NN 1
E=- qq|—=w(r.r) + _—
2|= JZ I J[D " |n51|r|_rJ+Dn|
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For convenience we define the following summation conven-

Din and Michaelides

The final result is to express the functidH(r;,rj) in the

following polynomial forms:

W(rr) = (e,d*+ 4e, F)K® + (g0 + 126,0° £ +

16e, ZHK® + (e,d® + 24e,d* &%+ 80e.d &* + 64e, LK +
(e,d® + 40e,d® 7+ 240e,d* &* + 448, d° £° +
2568, CA)K® + (e,d"° + 60e,d’ £* + 560e,d° ' +

1792,d" EOK™ + (e,d"? + 84e,d™° &% +

1120,d® EYK™2 + (e,d™ + 1128,0" EH)K'® + e,d" K"

12)

W(r,r) = eK’d? + 46 M*K(y* + &) + eK°d* +
12e,M%K3(? + A + 16e,M*K (57" + &%) +
96e,M*N°K 7? &% + eK'd® + 24e,M*K°(5* + £%)d* +

tions:
(a) for 1PD: (a) for 1PD:
Ki _ - " 1 9
= |n| ©
(b) for 2PD:
o ) 0 minj
MNKK = zz—mz — (10)
=) + '™
e e () (b) for 2PD:
(c) for 3PD:
LIM]Nth — Zu " " 11)

5= feo = (|2+ mZ+ n2)i+j+k-H/2

These constants are directly obtained from numerical com-

putations and are given in Tables 1, 2, and 3.

case, ifK® andL?K are transformed into integrations, they are
conditionally convergent, but not absolutely converderin
the present work, although the numerical summations for these

two constants converge very slowly, it seems that

the steady values as the lattice numbers used in the summations
increase. In Table 3 the values k¥t andL?K are obtained by

using 8000 replicas in each dimension.

TABLE 1: Ki for 1PD

80eM*K3(n* + hd® + 480eM*NK? % & o +

64e;M°K (1° + £°) + 960, M*NK (* + &%) #° & +

For the 3PD

they approach

e,K%d® + 40e, MK'(5” + £A)d° + 240,M*K3(n* +
Ed* + 1440 MANPKS 1% 220 + 4488 MOK3(n® + £ +
6720, MNK3 (% + &) n? &2 o + 256,M°K (1 + %) +

7168,M°NK (57" + &% 5 &%+ 1792@,M*NK 5* &* +

e;KMd" + 60e,M°K2(5? + A + 560e,M*K' (7" +

&Md® + 3360, M°N’K” 4* £ d° + 17928,M°K>(;° +

£%)d* + 2688G&,M*NK>(7* + &%) * & d* + K% +
84e, MK (n* + A)d™ + 1120,M*K%(n* + £Hd® +

K3=0.404114
K15=0.611765x 104 K= 0.152744x 104

TABLE 2: MINIKk For 2PD

K =0.738555x 107! K7=0.166986x 10!
K®=0.401679x 1072 K!1=0.988377x 1072 K13=0.245427x 1073

6720,M°NK® * 22 d® + e K™%0 + 112,M*K™3(5)* +

Cz)d12+ 98K17d16 (13)

K3 =0.361870x 10

M2K® = 0.191576
K”=0.695644x 10!
M2N?K3 = 0.587627x 1072
K®=0.144917x 10!
M2N2K® = 0.104890x 1072
M8K = 0.532304x 102
K1 =0.319897x 102
M2N2K7? = 0.197878x 1073
K13=0.728364x 1073
M2N2K® = 0.383284x 1074
K17=0.398205x 10

TABLE 3: L'MINKK! For 3PD

M2K = 0.180935x 10
M?4K = 0.153803

M2K® = 0.347822x 10!
MK = 0.259678x 107!
M2K7 = 0.724583x 1072
MEK® = 0.567248x 1072
MEN?K = 0.349438x 1073
M2K® = 0.159948x 102
M®K5 = 0.130267x 1072
M2K! = 0.364182x 1073
K1%=0.169119x 1073

K®=0.383151

M2N?K = 0.377724x 107!
M“K3 = 0.289059x 10!
M*N?K = 0.293813x 102
M“K® = 0.619693x 102
M*N?K3 = 0.524452x 1072
M*N*K = 0.175014x 1073
M“K” = 0.140160x 102
M*N2K® = 0.989390x 10°*
M“K® = 0.325854x 102
M2K1® = 0.845593x 10™*

K3=0.986843x 107

L2K® = 0.580997
K7=0.235331

L*M2K = 0.544126x 102
L2M2N?K = 0.135187x 102
L2M?K® = 0.189294x 102
L*K® = 0.100497x 10!
L*M2N?K = 0.612907x 104
K11=0.812204x 1072
L4M2K® = 0.147694x 1073
L2M2N?K® = 0.275193x 104
L2M2K® = 0.578203x 1074
L2K3=0.120366x 103

L2K = 0.328948x 107
L2M?K = 0.102809
L2K5=0.784436x 10!
L*K® = 0.539749x 10!
K®=0.415069x 10!
L*M?K3 = 0.854536x 1073
L®K3 = 0.834066x 102
L8K = 0.728973x 1072
L2K® = 0.270735x 1072
L*K” = 0.206153x 1072
K!¥=0.168125x 10?2
L*K® = 0.444777x 1073
K17=0.797076x 104

K5=0.174299x 10

L*K = 0.375379

L2M2K3 = 0.122344x 10!
LK = 0.430923x 107!
L2K” = 0.138356x 10!
LSM?K = 0.525465x 1073
L2M2N2K3 = 0.183872x 1073
L*M*K = 0.267781x 1073
L2M2K” = 0.322907x 1073
L8K®=0.176615x 102
L2K!t = 0.560418x 103
K15=0.361099x 1073
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(c) for 3FD: *Z

W(r,r) = (K + 4e,L%K)d’ + (e,K° + 126, °K* + .
|
48e, 'M?K)d* + 16e,(L'K — 3L°M?K) (&*+ " + &%) + |
(eK” + 24e,L°K® + 2408, °M°K> + 320e,L'M°K)d® + :
80e,(L'K® — 3L2MK3) (&% + n* + Yo + 64e(L°K — CI/) 2
BL'M?K) (£° + 5° + %) + 19208,(3L°M°NK — A A
L*M?K) E2 5? &% + (g,K° + 40e,L°K’ +7208,L°MK® + %
2240, L*M?K® + 1792, 'M?K)d® + 2408,(LK° — <

2p 121 S 4 4 A\ 4 613 _ =1 A 213 x
SLIMTK) (87 0" + C)d" + 4488, (LK™ —5LMK) Figure 1. Cell with two counterions.

(E°+ n° + O)d® + (40320°M°N*K3e, —

TABLE 4: Energy Errors of Egs 12, 13, and 14 at the Mesh

13440.*M*K%e, + 107520 *"M°N°Ke; — Points
21504°M°Key) £ & + 256e(L°K — TL'MK)(&° + absolute  relaive ~ total energy
8 & 1 o5 (7OL4M4K B 42L6M2K)(§4 Spgte error error (%) error (%)
n ) 6oy n eq 12 for 1PD 2.1x 1072 115 1.6
7t &Y+ (eSKll + 6036|_2K9 + 1680.L*M3K” + eq 13 for 2PD 0.27 206 3.8
4 25 10 a7 2 ; o 4 eq 14 for 3PD 0.60 466 4.3
8960e,L *M?K%)d™® + 560e,(L*K” — 3L°MKT) (&* + n* +
&)’ + 1792(LK° — BLMK®) (&° + ° + £ + been canceled. However, eqs-1%4 are still useful, because
179338(90|_2|\/|2N2K5 — 30L*“M%K®) &2 ,72 edt+ (eeK13 + they demonstrate the forms of the expansion formulasifer

(ri,r;). We follow these forms and develop more accurate

2,11 25 12 12 4,9
84e,L°K™" + 3360l °M Kg)d + 1120 K formulas for Q in the following section.

NV 4 4 4\ 18 15
LM Kg) (& + o+ E0d™+ (eK™+ 2.3. General Expansion Method. In the previous section
1128, ’KP)d™ + gK d*® (14) we have used an eighth order polynomial to approximate the
function (1 + B)~Y2 However, the accuracy of the final

In order to test the accuracy of these formulae we consider aformulas for¥(r;,r;) is worse than the expansion eq 8. If the
central cell with only two counter-ions as depicted in Figure 1. function (1+ 8)~12is approximated more closely by keeping
Particle 1 is always located at the origm €& 0), while particle more terms in the expansion, the higher order term§ wfll
2 may be anywhere in the box. Without loss of generality, we make the expansion formulas very complex. An alternative
assumeD = 1 and—q; = 2 = 1. The central cell is divided  method is the general expansion method, which has been
into mesh points with starting point at (0.05, 0.05, 0.05) and a developed to overcome this accuracy problem. Following eqs
uniform increment of 0.1 in the three dimensions. We locate 12—14, we observe that any expansion serie ofill result
particle 2 at the following mesh points, respectively: in the following general forms fol/(rir)):

(a) For 1PD: Noting the symmetry betweeandy directions
in eq 12, for the central cell with < 2, we locate particle 2 at
the mesh points which satisfy® x <y < 2,and 0< z < 1.
The total number of the points is 2100. ) . 5 s )

(b) For 2PD: Noting the symmetry betwegandz directions IP(ri,rj =(Ented +ed+ed+ed+.)d+
in eq 13, for the central cell with < 2, we locate particle 2 at (e + 0 + e, d" + 6, d° + e, d® + .57 + (&5, +
the mesh points which satisfy® x < 2, and 0<y <z <1, 2 4 6 8 4 2
The total r?umber of the poir]?t/s is 1100. g Col” F Gl + 8" + Egell 4 )0+ (€ F " +

(a) for 1PD:

(c) For 3PD: Noting the symmetry betweeqy, and z ey’ + e+ el + )0+ (a5 + et + e d’ +
directions in eq 14, for the central cell with= 1, we locate e54d6 + essds + .8+ ... (15)
particle 2 at the mesh points satisfyinggOx < y < z < 1. The
total number of the points is 220. (b) for 2PD:

For the different positions of particle 2, the exact values of
the electrostatic energy in the central_cell can be dir(_ectl_y ‘I’(ri,rj) = (e + e12d2+e_|_3d4+ e14d6+ e15018_|_ ...)d2+
calculated from eq 3 over enough replicas in each periodic

imensi i i i + e, + e, d* + ,,d° + e, d® + 2+ )+
dimension. In this study, the number of the replicas used in (€11 &d° +ed" + e, d” + e d" +...) (7" + &)
each dimension is 2000 for 1PD and 2PD, and 500 for 3PD. (o, + e, + eyd* + ey d®+ e + ) G + £ +
The electrostatic energy may also be obtained from egs 7, 12, 2 4 6 8 6 -6
13, and 14 for different periodic systems. Table 4 lists the (8T € + €0 + ed” +eed” +..) (7" + &) +
maximum errors of egs 1214 at the mesh points, and the total (e, + ex,0” + ey d* + ey, + e, d®+ ..) (8 + &) +
energy errors of all the points. Here the total energy of each 2 4 6 8 202
system is the summation of the energy, when particle 2 is located (e612+ €0 4+ €sad :‘ €sd 8+ €osd 4+4---)’7 &+ (971:‘
at different mesh points. The relative errors of these formulas  €,,d° + e,,0" + e,d° + e,d” + .. )"°C" + (g + e5,0° +
are rather high and exceed the value of 0.8%, the error limit of d' + e d®+ end® + ) 62 + e + +e.d+
eq 8 when—0.76 < 8 < 3.34. The decrease of accuracy is G 6844 6856 )8(77 C)Z ¢ ) (jgi €2
probably caused by the fact that the leading term of eq 8 has Eoad” + €’ + o™ + ...) (" + &) T + ... (16)
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this case, the constants are different from those in Tables 5 and
6 and should be determined by the least-squares method for a
smallerA. Considering that in practical simulations statistical
errors due to limited simulation time are of the order of 3%,
we believe that the egs 15 to 17 with the constants in Tables
5—7 are adequate and may be applied to most practical
simulations.
It must be pointed out that in some practical applications
involving slabs or cylinders, there are image forces arising
2. 22 2 4 6 8 between charges and the wall. These forces depend on the
) ST G (€ G+ G+ G F el ) dielectric properties of the wall and play an important role in
Et+ a8+ D+ .. @A the determination of the behavior of the charges next to the
wall. This paper presents a mathematical model for the
wheree; are constants for each periodic system. Instead of calculation of the long-range forces and does not explicitly
following the method of section 2.2, we evaluate these constantsgccount for these image forces. However, if one knows the
by optimization in such a way that the energy calculated by particular form of the image forces and if these forces are long-
egs 15-17 can best fit the exact values at the mesh points in range forces, then the same mathematical technique and the
the cell of Figure 1. Using the least-squares method, we obtainsame formulas can be used with relative ease for the calculation
the constants in Tables5. These constants are generally valid of all the interactions, including image forces, between wall
for systems containing many particles, because the interactionsparticles and other charges in the periodic systems under
between two particles are determined only by their relative consideration.
positions. Regarding the dielectric behavior of the systems studied, in
Table 8 summarizes the energy errors calculated from the the strictly periodic three-dimensional system, the images extend
above formulas with the above coefficients. A comparison to infinity in all three dimensions. Because of this, one does
between Tables 4 and 8 shows that the accuracy of thesenot need to make any assumptions about the dielectric behavior
formulas has been dramatically improved at every mesh point. of the surroundings. The dielectric behavior of the system may
Furthermore, the total energy errors of the systems remain verythen be directly obtained from the MD simulations. In the case
small. Calculations at other nonmesh points also reveal that of the one- and two-dimensional systems, one does not need to
these equations manifest the same order of accuracy. Thismake any assumptions about the surroundings in the periodic
implies that egs 1517 represent correctly the variations'®f directions. However, one needs to make an assumption about
(ri,rj) in the periodic systems. Because far more mesh points the way of interaction between the wall and the other charges
have been used for 1PD and 2PD than for 3PD, eqs 15 and 16 the (nonperiodic) directions constrained by the walls. For
have larger errors than eq 17. However, egs 15 and 16 areexample, one may prescribe a certain charge distribution at the
valid over a wider range of conditiond & 2). wall particles and then use the GENB method, as described
We have also tried to include more coefficients in egs 15 above, to investigate how the dielectric behavior of the system

and 16 in order to increase the accuracy. However, the will be affected by the prescribed distribution of charges.
improvement achieved by including more terms is not signifi-

cant. It must be pointed out that if we only consider smaller 3: Neighbor-Box Technique
systems 4 < 1.5), the same number of constants as in Tables 3.1. Interpolation Scheme. If we calculate the energy of
5 and 6 can make egs 15 and 16 reach very high accuracy. Inthe system directly from eq 7 and the general expansion

(c) for 3PD:

W(r,r) = (e + e d + e d* + e d + e d® + ) +
(@11 e+ ed + e’ +ed® +..) E + ' + I +
(€31 T e’ + &30’ + 30’ + e d® + ) @+ 1° +
&) + (e + e’ + e+ €, + e P+ ..) @+
7° + 8% + (65, + el + el + e, d° + eyl +

TABLE 5. g; for 1PD and 4 < 2 (Other g; = 0)
j=1 j=2 j=3 j=4 j=5

i=1 —0.20774248-00 0.3428627E01 —0.7106388E-02 0.9221446E03 —0.4758371E04
i=2 0.6525880H-00 —0.3325861H-00 0.1061282E00 —0.1659468E01 0.9557752E03
=3 0.9311387E01 0.1294186E00 —0.10146728-00 0.2175868E01 —0.1449539E-02
i=4 0.4547276H-00 —0.6302982H-00 0.2784920E00 —0.4824246E01 0.2844989E02
i=5 —0.7632409E-01 0.2246102E00 —0.1210333H8-00 0.2276231E01 —0.1396308E-02

TABLE 6: ¢ for 2PD and 4 < 2 (Other g; = 0)

j=1 j=2 j=3 j=4 j=5
i=1 —0.1816724H-01 —0.1699775H-00 —0.4174220E01 —0.9328132E-02 —0.9021478E-03
i=2 —0.2735749H-01 —0.8144851H-00 —0.2867662H-00 —0.6810108E01 —0.6941093E02
i=3 —0.6560462H-00 —0.3418037H-00 —0.1039581H-00 —0.1847906E-01 —0.9708847E03
i=4 —0.3093328H-00 —0.6165123H-00 —0.3198507H-00 —0.6095910E01 —0.3863707E02
i=5 —0.32612008-00 —0.12678208-00 —0.1961777E01 —0.1235827E01 —0.1161693E02
i=6 —0.9631366H-00 —0.32923708-00 —0.3165100E01 —0.1012508E01 —0.3040349E-02
i=7 —0.10080128-01 —0.45741108-00 —0.6432559E-01 —0.7212198E-02 —0.7874020E03
i=8 —0.5285276H-00 —0.1029238H-01 —0.4744796H-00 —0.7867250E01 —0.4695472E02
i=9 —0.4604183H-00 —0.1477914B-00 —0.23031308-00 —0.5850997E-01 —0.4454742E-02

TABLE 7: g for 3PD and 4 = 1 (Other g; = 0)

ji=1 j=2 i=3 i=4 i=5

i=1 —0.1624441E03 —0.1840786H-00 —0.1360559H-00 —0.2026793H-00 —0.1069545E-01
i=2 —0.31191606-00 —0.3209188H-00 —0.6623410E01 —0.1626264H-00 —0.2577575E01
i=3 —0.1181618H-00 —0.1265090H-01 —0.8145192H-00 —0.3992228H-00 —0.6944240E01
i=4 —0.1140781E-01 —0.7393993H-00 —0.3010605H-00 —0.1284144E01 —0.1827551E01
i=5 —0.7151641H-00 —0.2737381H-01 —0.1160333H-00 —0.7387805E01 —0.2794727E01
i=6 —0.14948178-01 —0.2071101E-00 —0.1467369E-00 —0.7977268E01 —0.6923794E-02
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box nodes at (ax,bxci), where k=1,8; aw=-1,1;
be=-1,1; o=-1,1.

Figure 3. The 8-node box (trilinear element).

3NNy; for 2PD, Ny = 9NNy and for 3PD,Ny = 27NN,
Noting that|n| < 1 corresponds to the particles within the
minimum images, we may express eq 7 as

E=E +E 18
Figure 2. Central cell and the minimum images divided into smaller L 2 (18)
boxes. To the boxn in the central cell, those boxes indicated iy -
- . with
are its neighbor boxes.
. N qq 1 N
TABLE 8: Energy Errors of Egs 15, 16, and 17 at the Mesh _ 1 i _
Points E,= _Z , BE= _Zqiq)(ri) (19)
- 256w, 25
absolute relative total energy
error error (%) error (%) and
eq 15 for 1PD 1.6< 102 3.2 4.8x 1073
eq 16 for 2PD 6.2 1073 3.0 15x 104 N g G;
eq 17 for 3PD 5.0¢ 107 0.98 5.3x 1075 o(r,) = ZB‘P(rirj) + Zﬁ (20)
& ’ r.r.
J jeNm 1"

equations, the total number of operations will be proportional
to N2, whereN is the total number of particles in the central
cell. Since the computational complexity Kf is an obstacle
for large systems, it is necessary to develop more efficient Where the particle i is located in the baw and € indicates
algorithms to calculate the energy of the system. that the particlg belongs toNm, or N,

For the case of short-range interactions we have developed In MD simulations, we have to calculate the electrostatic
the neighbor-box technique in order to improve the computa- forces on a particle, i.ef; = —V/E, whereV; means the gradient
tional efficiency. The basic premise of this technique is that with respect tari. In this case, we have
the minimum images are subdivided into many boxes, as shown
in Figure 2. The sides of each box are longer than the highest F=F'+F? (21)
cutoff radius of all the short-ranged interactions. The neighbor
boxes of a given box are these, which have at least one commonWith
point with the given box. Those boxes, which are outside the g
central cell bu_t are Iocated_|n5|de th_e minimum images, shc_)uld Fil = —q % Al—, Fi2= —qAD(r) (22)
also be taken into account in the neighbor boxes. The particles &R, \Irorl
in the same box or its neighbor boxes are called neighbor
particles. To calculate the forces on a particle in the given box, Because the minimum images are divided into many small
we only take into account the interactions between this particle poxes,Ny, is generally much smaller than_m_ Therefore, in

and the neighbor partiC'eS. The essence of this method is Similarthe Computation of the energy and the fOfCES, the total number
to the link-cell method?® of operations is mainly determined by the calculatiofEgénd
We modify and extend the neighbor-box method to the Fz2 |n this study, the interpolation method is used to reduce
computation of long-range interactions. The basis of the the computation of these terms.
calculations is that for a particle in the given box, the long-  Two kinds of boxes are considered: one is the trilinear
range interactions between this particle and the neighbor element with 8 nodes and the other is the complete quadratic
particles are calculated directly, while the interactions between element with 27 nodes, which are depicted in Figures 3 and 4.
this particle and particles outside the neighbor boxes are obtainedrhe first is widely used in the finite element meth8d2? We
by interpolation. There is an intrinsic assumption in this method first calculate the value oo at those nodes of the box, i.e.,
that the interactions between neighbor particles may vary sharplyd(r ,,¢d. Then for every particle in the bo(r;) and Vid(r;)
with distance, while the interactions between nonneighbor gre obtained by interpolation from the nodes at the particle
particles will change slowly with distance. positionr;. Because the node number of a box is in general
We assume that the total box number in the central cell is much less than the particle number in the box, the total number
M. For a given boxm, in the central cell, the number of the  of operations in a given box can be substantially reduced.
neighbor particles ifNm, and the number of the nonneighbor e first consider the interpolation functions on the two line
particles within the minimum images N, For 1PD,N, = elements of Figure 5. The potentials are knowragt= —1
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box nodes at (axbx,ci), where k=1,27; a=-1,0,1;
b=-1,0,1; c=-1,0,1.

Figure 4. The 27-node box (complete quadratic element).

¢ 0

a=-1 a=1

two-node element

@
a:=0

°

a=1

three-node element
Figure 5. Line elements.

anda, = 1 for the 2-node element, or af =
az = 1 for the three-node element.

—1,a,=0, and
For any poiat,in the

Din and Michaelides

_2X=X) 20— VYo) 22— 2z)
oL L, L

X y z

(26)

Obviously,—1 < a,b,c < 1. The potential at th&th node of
the box, ®(rnege k), is directly calculated from eq 20, where
I'node k i the location of théth node of the box in space. Then
the potential atd,b,c) is found by interpolatiot

P(ab.g = Zh(a@)h(b,th(C,Q)@(fnode_k) (@7)
=

wheren is 8 for the 8-node box and 27 for the 27-node box,
(axbk,cy) is the node position shown in Figures 3 andh,
corresponds to eq 24 for the 8-node box and eq 25 for the 27-
node box. The gradient of the potential is expressed as follows:

w_20Mh@d) )
XL s "ERNCQ () (28)
w_2umo )
ay Lykz oy @ANCIPI e (29)
ad 2 "nah(c,g)

h(a’q‘)h(b’b()q)(rnode_k) (30)

Py

We can use eqs 2730 to calculateDd(r;) and Vi®(r;) on every

particle in the central cell. Then, the energy of the system and

the forces on every particle are calculated from eqs 18 and 21.
The accuracy of the interpolations is mainly determined by

elements, the potential may be approximated by an interpolationthe node numbers and the box sizes. Generally, the 27-node

from the known nodes:

2@ = YhaaP@) Q=a=1 @3
=

wherenis equal to 2 for the 2-node element and 3 for the 3-node
element®(ay) is the potential at thith node, andh(a,a) is an
interpolation function which is similar to the one used in the
finite element method?

for the 2-node element:

h(a,a) = 0.5(1+ aa) (24)
and for the 3-node element:
h(a,g) = 0.5[1S,+ aa+ (1.5— 0.55)Sa (25)

whereS, = —1 if ax = 0; otherwise S = 1.
The interpolation accuracy is of first order for the 2-node

box generates a higher accuracy, while the computational speed
of the 8-node box is faster. In this scheme, the interactions
between neighbor particles are directly calculated and only the
interactions of nonneighbor particles are obtained by interpola-
tion. Therefore, with the same node numbers, the larger the
box the more accurate is the interpolation. This is different
from the traditional finite element theory, where smaller
elements lead to higher accuracy.

3.2. The GENB Method. The combined general expansion
and neighbor-box method (GENB) for the calculation of the
energy and forces, which includes both the short-range and long-
range interactions on every particle in the central cell, may be
implemented as follows:

Step 1: Divide the minimum images into many boxes, the
sides of each box being larger than the highest cutoff radius of
all the short-range interactions. Then determine the neighbor
boxes of each box.

Step 2: For every particle in a given box, calculate the short-
range interactions and the electrostatic interactions between this
particle and other particles within this box and the neighbor
boxes. Hence, obtaig; from eq 19 and! from eq 22.

Step 3: Calculat&@(rnoge k) at the nodes of each box from

element and of second order for the 3-node element. The aboveed 20. Use eqs 1517 for the different periodic systems.

two expressions can be used to construct the interpolation

functions for the 8-node box and the 27-node box: Let the
central cell be uniformly divided intt,, My, andM, segments

in thex, y, andz directions, respectively. Then the number of
boxes in the central cell ¥ = MyM,M,, and the three sides of
each box aré., = D,/M,, Ly = Dy/My, andL, = D/M,, where

Lx Ly, andL, must be longer than the highest cutoff radius of
all the short-range interactions. For any poiy,) in the box
with center at Xo,Y0.%), it is convenient to introduce the local
coordinates:

Step 4: For every particle in a given box, interpolde
(rnode k) to the particle position to obtaid®(r;) by eq 27, or
calculate the gradient ab(r;) by eqs 28-30. Then obtairE,
by eq 19 and2 by eq 22. Thus, calculate the energy of the
system and the forces on every particle.

An estimation on the operations of the above steps is as
follows. We assume that the minimum images of the system
is g1, and the average number of the neighbor boxegg.i$hen
the operations from steps 2 to 4 are proportionadlié, nM(N

+ Nm), andnN. Generally,Nm ~ goN/M, and N, ~ giN —
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TABLE 9: Force Errors on Molecules at the Reference
States and the Relative Time To Run 100 Steps for Different

g:N/M. Consequently, the total number of operatioms,is
approximately

Schemed
N2 N absolute relative relative
T= CngM + Can(N + 91N92M) + cnN (32) nodes My, My, M) error (/o) error (%) time

8 (1,1,1) 0.20 25 0.61

- . 8 2,22 1.79 22 0.36

where the coefficientss, c;, andcs are determined by the 8 §3,3,33 212 26 0.34
practical programming methods. Wheh = [c;goN/con(1 + 8 (1,1,2) 1.93 23 0.35
g1)]V2, the operations reach the minimum value, whicf is 8 (2.2,1) 0.19 2.3 0.61
4cieng(1 + go)]¥2N32 + (c3 — Cg)nN. That is, if M is 8 (331) 211 26 0.52
[4cicoangp(1 + g)] (Cz — C202) hat i _ 7 1171) 003 04 0.5
properly selected, the total number of operations is proportional 57 222) 037 16 047
to N2 We have to point out that, although ti&n log n) 27 (3‘3'3) 0.92 11 0.88
algorithms using fast Fourier transformati®s are more 27 (1:1:2) 0.76 10 0.40
efficient for 3PD, the GENB method can be easily used to study 27 (2,2,1) 0.04 0.5 0.67
different periodic systems. 27 (3.3,1) 1.87 23 0.81

@ The unit of time is the CPU time to run 100 steps without using

4. Simulation of Water Molecules in a Cylindrical Pore the neighbor-box technique.

Many computer studies on the equilibrium statistical proper-
ties of water molecules near walls have been reported in the
past decad& 30 These investigations include water molecules
on hydrophobic and hydrophilic walls, and ionic solutions. In
order to study the computational efficiency and accuracy of the
neighbor-box technique, we use the GENB method to simulate
water molecules in a cylindrical carbon pore. This study may
also be used to calculate statistical properties of a solvent in a

the 27-node box under the divisions (1,1,1) and (2,2,1), which
has a relative error less than 0.5%. The 8-node box under the
divisions (1,1,1) and (2,2,1) also has reasonable error limits
(<2.5%). If the box numbers in the constraint directions are
less than 3, in most regions the electrostatic interactions between
the molecules are directly calculated without interpolation errors
by the GENB method. Therefore, the central cell can be divided

fine capillary, an important problem of biological and industrial
membranes.

The wall of the pore consists of 10 rings, each having 17
equally spaced carbon atoms on a circle of railys= 12.244
A. The rings are placed in a way that atoms form a triangular
lattice on the cylinder surface. The diameter of the wall atoms
is ow = 3.2 A and the height of the cylinder is 22.627 A. We
use 200 water molecules in the simulation, where the water
water potential is determined by the SPC/E mddelve assume

by half in the constraint directions, without affecting the
accuracy significantly. The 27-node box under the division
(2,2,2) may also be used for practical simulations if simulation

time is the main constraint. Since the interpolation error is more
sensitive to the box size in the periodic direction, the box size

in this direction should not be much smaller than the constraint

sides.

In Table 9 the CPU time to run 100 steps without using the
neighbor-box technique is used as the unit of time. Then the

that the effective radius of the pore is 3.024 A narrower than CPU time of the other schemes to run 100 steps is compared
Ry. The value 3.024 is obtained from the zero-potential point With this time. We note that the neighbor-box technique
of a structureless carbon platfe.Such a system corresponds demonstrates a substantial time reduction in all the cases
to a bulk density of 1 g/cfr The interactions between water ~considered. Under the same condition, the 8-node box is
and carbon atoms are given by the Lennard-Jones potentialége”erf?”y faster than the 27-node box as expected. The fastest
and the required parameters are chosemas= 3.183 A, own speed is reached by the 8-node box wih,M,,M,) = (3,3,3).
= 2.942 A, ewo = 0.125 kcal/mol, andywy = 0.0772 kcall However, the error introduced under some conditions is unac-
mol. The temperature of the system is kept at &5y the ceptable. For this problem, we recommend the 27-node box
Nose-Hoover isothermal dynami@3. The SHAKE proceduf@ ~ With (MxMyMz) = (1,1,1), (2,2,1), or (2,2,2).
is used to maintain the internal geometry of the SPC/E Itis evident that when a particle traverses through a cell side
molecules. A cutoff radius of 7.5 A is used for all short-range and finds itself into another cell, there is a discontinuity in the
interactions. The Verlet algoriththis used with time step 2  calculated values of energy and force. We considered the
fs. The initial state is obtained by using the 27-node box under magnitude of this discontinuity and found out that it is of the
(MxMy,M;) = (2,2,2) to run 100000 steps from a random same order as the magnitude of the errors listed in Table 8.
configuration. We choose five configurations of water mol- This occurs because Table 8 lists the maximum energy error
ecules as the reference states. This corresponds to the conon every particle over different configurations of the system.
figurations obtained by running another£ 1)100 steps from In these configurations several particles have definitely traversed
the initial state, where the integewvaries from 1to 5. All the through the side of their cell into one of the neighboring cells.
simulations in the present work were carried out in an IBM The discontinuity/error is caused mainly by the interpolation
RISC/6000 workstation. scheme in the neighbor-box technique and its order of magnitude
Table 9 shows the computational time and accuracy with remains the same when a particle traverses through a cell.
different box numbers and box nodes. For the reference states We have used the 27-node box withl,{My,M,) = (2,2,2) to
mentioned above, the exact values of the forces on every watersimulate water molecules over 500 000 steps from the initial
molecule are calculated without using the neighbor-box tech- state. The density distributions of oxygen and hydrogen atoms
nique, in order to compare the accuracy of different interpolation are shown in Figure 6, where(r) and pu(r) are normalized
schemes at the same instant. The average force on every wateby the number density of bulk water and the dotted lines
molecule is about 8.11g/F in the five reference states. In Table correspond to the bulk values. We note that the density
9 the absolute error is the maximum value in the five reference oscillations of the oxygen and hydrogen atoms are not so
states. The relative error is defined as the ratio of the absolutepronounced as the distribution of a simple fluid (like argon)
error to the average force on every molecule. With the same near the wall. In the work of Zhu and Robing6the hydrogen
box division (My,My,M,), the 27-node box is more accurate than density at the first peak near a neutral wall is larger than the
the 8-node box. It is apparent that the most accurate scheme isulk value, while Figure 6 shows that this number is smaller
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Figure 6. Density profile of oxygen and hydrogen atoms in the layer 3

cylindrical pore. O; oxygen atoms; H; hydrogen atoms. The dotted lines ¢y 0 8 structure of water molecules near a wall atom. The positions

correspond to the bulk values of oxygen and hydrogen atoms; the dasheq ¢ iha three layers are indicated in Figure 6

lines indicate three layers near the wall. '

y D,/D, b = Dy/D, andc = D4/D, whereDy, Dy, andD, are the
lengths of the cell in the three dimensions abdis a

) characteristic dimension. Hence, the magnitude of the distance

A @ between the positions of particles u and v and all of its images
can be represented as follows:

a2 [ P

A

-
-

@ _
O—¥

x dr = [T(u) — T(v) + D(&T — b,J +c.k)| (32a)

where the vectors, j, andk are the unit vectors in the three
dimensions and the integdrgn, andn vary from minus infinity

Figure 7. Wall atoms. A: the adsorption site. to plus infinity. Hence we may write for the distance d

than the bulk value of 2. This difference is attributed to the
fact that, in the present workwo and ewy are much weaker
than the energy depth of a 10-4-3 wall used in the work of Zhu
and Robinsor? It is also observed that the hydrogen atoms
can approach the wall more closely than the oxygen atoms. This
happens because hydrogen atoms are relatively small and wate

molecules tend to orient with the hydrogen atoms toward the 9€neral expansion form for the energy function. The pertinent
wall. coefficients may be obtained by fitting the exact energy of a

In order to demonstrate the detailed structures of water particular sy_stem by the least square method. This procedure
molecules near the wall, we select a wall atom on the surface €20 be easily adapted to complex two-dimensional systems,

of the pore together with its neighbors and then study the density WhereDx = Dy.
distributions of water molecules in the three layers above this
atom. This selection around a central atomxat y = 0) is
depicted in Figure 7. In this case, each layer inZlrection The general expansion method has been developed to
has a width 61 A as indicated in Figure 6. The detailed calculate the long-range interactions due to the particles outside
concentrations of the oxygen and hydrogen atoms at the threethe minimum images, for three kinds of periodic systems. The
layers around the central atom are shown in Figure 8. We derived formulas are valid, even if the charge neutrality
observe that in the first layer both the hydrogen and the oxygen condition is not satisfied. In this case the potential at a point
atoms locate preferentially at adsorption sites, which are denotedshould be interpreted as the relative potential, that is the
by the letter A in Figure 7. Due to the core repulsion the oxygen difference between the real potential and a uniform background
atoms will not stay on the top of the wall atom. The second potential. We have presented the expansion coefficient for
layer corresponds to the first density peak near the wall. In < 2 for 1PD and 2PD, and fot = 1 for 3PD. It must be
this layer the oxygen atoms still prefer to locate at the adsorption pointed out that the general expansion method is very versatile
sites, while the distribution of hydrogen atoms becomes less and may be further extended to complex systems, such as the
ordered. The third layer contains the first density valley near central cell with different geometries, or particles with dipele
the wall. In this layer, the densities of both the hydrogen and dipole interactions.
oxygen atoms are higher on the top of the wall atoms than at The neighbor-box technique is also used to improve the
the adsorption sites. This is due to the lack of atoms in the computational efficiency of long-range interactions. The tri-
corresponding lower layers. The fact that water is unable to linear element with 8 nodes and the complete quadratic element
effectively “wet” the carbon wall has a significant effect on the with 27 nodes are considered. Under the same conditions, the
dynamic behavior of water such as viscosity and velocity 27-node box is more accurate while the 8-node box is more
distributions. efficient in computations. Larger box size leads to higher
It must be pointed out that one can extend the GENB method accuracy under the same node numbers. The combination of
to noncubic, complex-geometry systems of two or three dimen- the general expansion method and the neighbor-box technique
sions. For this purpose, one may define the parameters is the GENB method. If the total box number is optimized,

dr =D@EA*+ A%+ AA)™ @+ M (32b)
In this casep is a function ofa, b, c, I, m, n, r(u), andr(») and,

for a given geometryg, b, andc are constants. One may follow
fhe same procedure as in the previous sections and obtain the

5. Conclusions
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the GENB method renders the operation of long-range interac-

tions proportional td\32,
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